Ensemble Classifier for Mining Data Streams

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive ensemble classifier for mining concept drifting data streams

Traditional data mining techniques cannot be directly applied to the real-time data streaming environment. Existing mining classifiers therefore need to be updated frequently to adopt the changes in data streams. In this paper, we address this issue and propose an adaptive ensemble approach for classification and novel class detection in concept-drifting data streams. The proposed approach uses...

متن کامل

A Semi-supervised Ensemble Approach for Mining Data Streams

There are many challenges in mining data streams, such as infinite length, evolving nature and lack of labeled instances. Accordingly, a semi-supervised ensemble approach for mining data streams is presented in this paper. Data streams are divided into data chunks to deal with the infinite length. An ensemble classification model E is trained with existing labeled data chunks and decision bound...

متن کامل

Robust ensemble learning for mining noisy data streams

a Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China b Centre for Quantum Computation & Intelligent Systems, University of Technology Sydney, Broadway, NSW 2007, Australia c Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing, China d College of Information Science & Technology, Univ. of Nebraska at Omaha, Omaha, NE 68...

متن کامل

Batch Weighted Ensemble for Mining Data Streams with Concept Drift

This paper presents a new framework for dealing with two main types of concept drift (sudden and gradual) in labeled data with decision attribute. The learning examples are processed instance by instance. This new framework, called Online Batch Weighted Ensemble, introduces element of incremental processing into a block-based ensemble of classi ers. Its performance was evaluated experimentally ...

متن کامل

Mining Data Streams with Skewed Distribution based on Ensemble Method

In recent years, there have been some interesting studies on predictive modeling in data streams. However, most such studies assume relatively balanced and stable data streams but cannot handle well skewed (e.g., few positives but lots of negatives) and skewed distributions, which are typical in many data stream applications. In this paper, we propose an ensemble and cluster based sample method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2014

ISSN: 1877-0509

DOI: 10.1016/j.procs.2014.08.120